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We employ mean-field lattice density functional theory to calculate complete phase diagrams of binary fluid
mixtures composed of molecules of equal size. We consider asymmetric binary mixtures in which the attraction
strength between like molecules of either species differs as well as the attractivity between a pair of unlike
molecules. Focusing on the topology of phase diagrams in the space spanned by the thermodynamic
fields temperature T, �mean� chemical potential ����A+�B� /2, and incremental chemical potential
�����A−�B� /2 ��A, �B are chemical potentials of pure mixture components A and B, respectively�, we
present an argument which precludes the existence of tricritical points �TCPs� in binary mixtures in general.
This is a consequence of a purely geometrical argument based upon an analysis of the number of ways in
which coexistence surfaces can be joined in the �Euclidian� space of T, �, and ��. However, we show that by
the same token, TCPs may exist in cases where the mixture possesses some special symmetry. These latter
results are in qualitative agreement with earlier works where, however, only special cuts through the complete
phase diagrams were considered so that the important relation between existence of TCPs and symmetry
properties of the mixture cannot be fully appreciated.
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I. INTRODUCTION

If one is dealing with fluids �i.e., gases or liquids� one is
almost always confronted with mixtures composed of two or
more components. Because of the interaction between mol-
ecules of the different components, mixtures exhibit a much
richer phase behavior than either one of the pure components
of which they consist. For example, such mixtures may
phase separate not only into a gaseous and a single liquid
phase but into a mixed as well as several demixed liquid
phases in which one of the components is the dominating
one. An understanding of the relation between the rather
complex phase behavior of fluid mixtures on one hand and
the interaction between its various molecular constituents is,
therefore, of vital interest both from a fundamental �1� and a
technological point of view �see, for example, Ref. �2��. In
this latter case, one is frequently facing the problem that a
mixture needs to be separated into its pure components �3�.

Specializing immediately to the simplest mixture, namely
the binary one composed of just two components A and B,
say, it is, therefore, not surprising that quite a bit of work was
invested over the past 30 years or so to elucidate the various
aspects of its phase behavior. For example, in their pioneer-
ing work, van Konynenberg and Scott demonstrated the
complexity of this phase behavior for a binary van der Waals
mixture �4�. In agreement with Furman and Griffiths �5,6�,
van Konynenburg and Scott introduced five principal classes
of phase diagrams depending on the relative sizes of the

molecules and the strengths of their intermolecular interac-
tions �see Ref. �1� for a review�. Several other authors like
Boshkov �7� �Ree equation�, Meijer et al. �8,9� �lattice fluid�,
Deiters et al. �10,11� �Redlich-Kwong and Carnahan-
Starling-Redlich-Kwong equation�, van Pelt and de Loos
�12� �simplified perturbed hard chain theory� have verified
and extended this classification scheme by introducing, for
example, a sixth principal class for dipolar mixtures together
with a number of subclasses.

However, all these previous works focused only on spe-
cial cuts through the phase diagram �such as critical lines or
triple lines along which one has three-phase coexistence�
rather than considering complete �i.e., three-dimensional�
phase diagrams in the space spanned by the three thermody-
namic fields necessary to uniquely specify the thermody-
namic state of a binary mixture. This is because the construc-
tion of such a complete phase diagram requires access to the
relevant thermodynamic potential which is difficult if one
determines the phase behavior solely from semiempirical
equations of state as in the earlier works �4,7,10,11� �see
above�. In more recent years, more microscopically moti-
vated studies aimed at a more comprehensive picture of this
phase behavior �13–27� by employing methods such as den-
sity functional theory �14�, integral equations �25,26�, hier-
archical reference theory �28�, molecular dynamics �27�, or
Monte Carlo computer simulations �15–18,24�. However, be-
cause of the much greater computational effort required in
particular by these latter groups of studies, they were all
limited to rather narrow ranges of model or thermodynamic
parameters. For example, in most cases, special mixing rules
were employed by which the interaction strength between a
pair of unlike molecules is calculated from the ones between
either pair of like molecules. In addition, the focus is often
on symmetric mixtures in which the interaction between like
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molecules of either species is taken to be the same as well as
the chemical potentials of both components.

However, as we shall demonstrate here, knowledge of the
complete �three-dimensional� phase diagram is essential not
only to classify the mixture type properly but more impor-
tantly to understand the existence of so-called tricritical
points �TCPs� in binary fluid mixtures. A TCP is a point in
thermodynamic state space where three coexisting fluid
phases become critical simultaneously. TCPs have been re-
ported in the literature many times before regardless of the
specific approach or model taken �see, for example, Ref. �4��.

However, based upon simple geometrical considerations,
we argue that in a general binary fluid mixture, TCPs must
not exist. Applying these geometrical arguments to the com-
plete phase diagrams, we also show that TCPs might very
well exist if the mixture possesses a certain symmetry. In this
latter case, our results are in �qualitative� agreement with all
previous studies where, however, no explanation for the ex-
istence of TCPs is given. Moreover, these previous studies
do not recognize the important relation between the topology
of the phase diagram and the existence of TCPs. An analysis
of this relation is one of the focal points of the present study
following in spirit the geometrical approach to equilibrium
thermodynamics presented in Ref. �29�.

The remainder of our paper is organized as follows. In
Sec. II A, we introduce our model. In particular, we discuss
three limiting cases of the thermodynamic fields where the
mixture degenerates to an effective pure fluid. In Sec. III, we
review briefly the classification scheme of van Konynenburg
and Scott �4�. Moreover, we present phase diagrams for sym-
metric as well as for asymmetric mixtures and analyze their
topology. Finally, in Sec. IV, we discuss our findings in the
context of earlier studies and summarize the geometrical
concept linking the topology of complete phase diagrams to
the existence of TCPs in binary fluid mixtures.

II. THEORETICAL CONSIDERATIONS

A. Model system

We consider a binary fluid �gaseous or liquid� mixture
consisting of NA molecules of species A and NB molecules of
species B. The molecules of both species are assumed to be
equal in size differing only in the attraction strengths �AA,
�AB, and �BB of an A-A, A-B, and B-B pair of molecules,
respectively. The mixture is contained in some volume V,
where we immediately simplify the subsequent analysis by
assuming that V can be discretized according to a regular
lattice of N cubic cells such that V=N�3, where � is the
lattice constant. To specify individual arrangements of mol-
ecules �i.e., configurations� on that lattice, we introduce the
occupation-number vector S��s1 ,s2 , . . . ,sN�, where the oc-
cupation number is a triple-valued integer, namely,

sk = �+ 1 cell occupied by molecule of species A

0 empty cell

− 1 cell occupied by molecule of species B,
�

k = 1, . . . ,N . �2.1�

We assume pairwise additivity of all interactions which we

model according to square-well potentials and take the width
of the attractive well �of depth �ij �0, i , j=A,B� to be equal
to �. Hence, each cell may be occupied by one molecule at
most and only nearest neighbors on the lattice attract each
other.

The Hamiltonian governing the evolution of our model in
state space may then be cast as �22�

H�S� = − �AANAA�S� − �ABNAB�S� − �BBNBB�S� − �ANA�S�

− �BNB�S� , �2.2�

where �A ��B� is the chemical potential of the molecules of
species A �B�. Moreover, NAA, NAB, and NBB are the numbers
of A-A, A-B, and B-B pairs of molecules, respectively, in a
given configuration S on the lattice. Explicit expressions for
these quantities were derived in Ref. �30�. Equilibrium states
of our model are characterized by the grand potential density
� related to the partition function of the grand canonical
ensemble � according to �22�

��T,N,�A,�B� = �
S

exp	−
H�S�
kBT


 � exp�−
N�

kBT
� ,

�2.3�

where T denotes temperature, and kB is Boltzmann’s con-
stant.

To proceed, we introduce a mean-field approximation for
the exact Hamiltonian given in Eq. �2.2�. It consists of map-
ping the occupation-number vector S onto two scalar quan-
tities �i.e., order parameters� by introducing �see Ref. �30� for
details�

	 �
1

N�
k=1

N

sk
2, �2.4a�

	m �
1

N�
k=1

N

sk, �2.4b�

where 	� �0,1� is the mean density of the lattice fluid �in
units of �3� and m� �−1,1� is the �dimensionless� miscibility
parameter. As one can verify from the definition in Eq.
�2.4b�, m=−1 if all nonempty cells of the lattice are occupied
by molecules of species B �i.e., sk

2=−sk�, whereas m= +1 if
they are occupied by molecules of species A instead
�sk

2=sk�. In the thermodynamic limit N→
, both order pa-
rameters become continuous on their respective domains.
The advantage of replacing H�S� by its mean-field analog
Hmf�	 ,m� is that we can derive an analytic expression for �.
Details of this derivation can be found in Refs. �30,31�. We
finally obtain
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��T,�,���	,m

= − �	 − ��	m + kBT�	 ln 	 + �1 − 	�ln�1 − 	�

+
	

2
��1 + m�ln�1 + m� + �1 − m�ln�1 − m���

−
3	2

4
��AA�1 + m�2 + 2�AB�1 + m��1 − m�

+ �BB�1 − m�2� , �2.5�

where the term proportional to T represents the entropic con-
tribution to the grand-potential density and intermolecular
interactions are accounted for by the last term in Eq. �2.5�
�proportional to 	2�. The first two terms on the right side of
Eq. �2.5� arise because of the coupling of the lattice fluid to
a �an infinitely large� reservoir of matter where, in particular,

� �
�A + �B

2
+ kBT ln 2, �2.6a�

�� �
�A − �B

2
�2.6b�

are thermodynamic fields coupling to the mean density �see
Eq. �2.6a�� and concentration of the binary mixture �see Eq.
�2.6b��, respectively. Note that we have included a trivial
contribution kBT ln 2 in our definition of �, which arises on
account of the different “color” associated with molecules of
species A and B, that is their formal distinguishability be-
cause of the labels “A” or “B.” If one prefers a more physical
interpretation of this scenario we may identify these “labels”
as internal, spinlike degrees of freedom following an earlier
suggestion of Pini et al. �28�.

B. Gibbs’ phase rule and its consequences

In principle, for a given set of values of the thermody-
namic fields T, �, and ��, � represents a complex surface in
order-parameter �i.e., 	-m� space which may have several
minima corresponding to thermodynamic phases. By analogy
with mechanical systems, these minima refer to stable phases
P�= �	� ,m��, where 	� and m� are order-parameter values at
the minimum pertaining to phase P�. For most combinations
of the thermodynamic fields, one minimum will be the global
one referring to a thermodynamically �i.e., globally� stable
phase, whereas the others are only locally stable �i.e., meta-
stable�. However, under suitable conditions �i.e., in certain
regions of thermodynamic state space� the global minimum
may be degenerate in the sense that two or more phases are
characterized by the same value of the associated grand-
potential density at these minima. In this case, two or more
thermodynamically stable phases coexist.

The number of coexisting phases p as well as the dimen-
sionality f of the geometrical object describing a particular
kind of phase coexistence are determined by the celebrated
Gibbs phase rule which may be stated as

f = c + 2 − p �2.7�

for a mixture of c components. We note in passing that f is
usually referred to as the “number of degrees of freedom” in
most standard physical chemistry textbooks �32�. However,
here one gains more insight if one adopts an interpretation of
f as the dimension of the geometric object along which phase
coexistence arises. Because of this interpretation, we con-
clude that f �0 to be geometrically �and therefore physi-
cally� meaningful because a geometric object of negative di-
mension is inconceivable. Specializing immediately to
binary mixtures �c=2� this, in turn, requires p to satisfy the
inequality p�4.

Obviously, the simplest case is the one in which a pair of
phases coexists �p=2�. From Eq. �2.7�, we infer that f =2,
that is the two phases coexist along a two-dimensional sur-
face in T-�-�� space. Let us now impose one additional
constraint on points pertaining to the coexistence surface,
namely, that

� �2�

��2�
T

= � �2�

���2�
T

= 0. �2.8�

Hence, we are looking for those points on the coexistence
surface at which the two phases become critical. Note that
points on the coexistence surface already satisfy

� ��

��
�

T
= � ��

���
�

T
= 0, �2.9�

that is these points correspond to minima of � in a thermo-
dynamic state space. Together with Eq. �2.8�, the previous
expression establishes the condition for criticality of the bi-
nary mixture. Obviously, the set of critical points must form
a line on the coexistence surface. Alternatively, we may re-
place the constraint stated in Eq. �2.8� by another one,
namely

m�P�� = m�P� . �2.10�

Because Eqs. �2.9� and �2.10� are supposed to hold simulta-
neously, we are now dealing with another set of points �i.e.,
a line� on the coexistence surface where the composition
�i.e., the concentration� of the coexisting phases � and  is
the same. Coexisting phases complying with the constraint in
Eq. �2.10� are termed “azeotrope.”

If three phases are in coexistence �p=3�, it follows from
Gibbs’ phase rule that these may be represented by a line of
points in T-�-�� space because f =1. This line is usually
referred to as triple line. We may also envision a situation
where any pair of the three coexisting phases become criti-
cal, whereas the remaining third phase stays noncritical.
Hence, we impose Eq. �2.8� in addition to the threefold de-
generacy of the global minimum of the grand-potential den-
sity. As a consequence, one point on the triple line may sat-
isfy both conditions and this point is usually termed a
“critical end point” �CEP�. Alternatively, one may impose
Eq. �2.10� to the triple line. By the same token, an azeotropic
point may exist along the triple line at which both triple and
azeotropic lines intersect.

Because p�4, we may also have a quadruple point at
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which the global minimum of the grand-potential density
exhibits a fourfold degeneracy, that is four phases of the
binary mixture may coexist at an isolated point in T-�-��
space, because here Gibbs’ phase rule leads to f =0. We sum-
marize these results in Table I.

A somewhat special case also listed in Table I is the one
termed the “tricritical point” �TCP�. Here we are dealing
with three phases that become critical simultaneously. How-
ever, from the above discussion, it turns out that three coex-
isting phases in a binary mixture form a line in T-�-��
space because f =1. If all three phases become critical, we
need to impose two more constraints of the form given in Eq.
�2.8� for any two pairs of phases that become critical inde-
pendently, which implies criticality of the remaining pair of
the triplet. However, our discussion above already showed
that applying one additional constraint of the form given in
Eq. �2.8� means that we are searching for a point on the triple
line. If we impose a second independent condition to this
point, we would, in fact, be searching for a geometric object
of dimension f =−1, which is inconceivable. Therefore, for
purely geometric reasons, a tricritical point should not exist
in binary mixtures but appear only in ternary and higher-
order multicomponent mixtures, where we would have three-
phase coexistence on a hypersurface of dimension f �2.
However, if the criticality of one of the two phases depends
on the fact that one of the other two become critical simul-
taneously because of some special inherent symmetry, we
are, in fact, imposing only a single independent additional
constraint on the mixture. In this special case, a tricritical
point may exist somewhere along the triple line.

One immediately realizes that one example, for such a
special situation is the symmetric binary mixture in which
�AA=�BB and ��=0 �17,28,30�. In this case, A- and B-rich
demixed liquid phases can only be distinguished on account
of the color of the molecules forming one or the other mix-
ture component. Following again the interpretation put forth
by Pini et al. �28�, the color of molecules of different species
may be viewed as a “…spinlike variable in addition to trans-
lational degrees of freedom so that their mutual interaction
depends both on their relative position and on their ‘internal’
state, namely whether the interacting particles belong to the
same species or not.” In such a symmetric mixture, both
demixed liquid phases may coexist with a gaseous phase and
eventually become critical. However, on account of the sym-

metry of this mixture type, this cannot happen independently.
Consequently, a point may exist at which A- and B-rich de-
mixed liquid phases and a gaseous phase become critical
simultaneously. In the light of this discussion, the existence
of tricritical points turns out to be merely a consequence of a
special symmetry inherent in the model system. We shall
return to this issue, which is central to this work, in greater
detail in Sec. IV, where we discuss our findings in a broader
context.

C. Limiting cases

1. Pure lattice fluid as a degenerate case

However, before attending to that discussion, it seems in-
structive to consider briefly a number of limiting cases of Eq.
�2.5�. These limiting cases will turn out to be relevant to the
subsequent analysis of the topology of complete �three-
dimensional� phase diagrams to be presented in Sec. III. We
begin with the pure fluid as a reference system which is
characterized by

�AA = �AB = �BB = �̄ , �2.11a�

�A = �B. �2.11b�

With this notation, we obtain from Eqs. �2.5� and �2.6a� the
simpler expression

� = − �	 + kBT�	 ln 	 + �1 − 	�ln�1 − 	�� +
	kBT

2
��1 + m�

�ln�1 + m� + �1 − m�ln�1 − m�� − 3�̄	2. �2.12�

In order to minimize � with respect to 	 and m, one can
show that for any constant 	 �� /�m=0 only for m=0 be-
cause the term ln��1+m� / �1−m�� vanishes only for this
value of m. Hence, we are dealing with stable phases that are
always mixed according to the definition of m in Eq. �2.4b�.
For m=0, on the other hand, Eq. �2.12� may be simplified to
give

� = − �	 + kBT�	 ln 	 + �1 − 	�ln�1 − 	�� − 3�̄	2,

�2.13�

which is nothing but the well-known expression for the
grand-potential density of the pure lattice fluid �22�. In Eq.

TABLE I. Geometrical nature of phase coexistences and symbols used to distinguish them in subsequent
figures.

aSee Eq. �2.7�.
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�2.13�, � turns out to be symmetric with respect to 	 and
1−	 if and only if �=−3�̄. For this value of the chemical
potential, one can show easily that � possesses two minima
�located at 	 and 1−	� for all 0�kBT�

3
2 �̄. Coexisting gas

and liquid phases are then characterized by this double mini-
mum in � at �x=−3�̄, where subscript “x” is used here and
below to indicate the value of � at coexistence. Hence, we
observe gas+liquid coexistence along the line �x=−3�̄ in
T−� space, which ends at the critical point, where

�� ��

�	
��

T=Tc,�=�c

= �� �2�

�	2 ��
T=Tc,�=�c

= 0. �2.14�

From the previous expression, kBTc= 3
2 �̄ and �c=−3�̄ follow

without further ado.

2. The limit ��\ ±�

As we already pointed out in Sec. II A, the field ��
couples directly to the concentration of the mixture �see also
Eq. �2.6b��. For large positive values of �� the term −��	m
in Eq. �2.5�, which is linear in m �	=const�, causes the mini-
mum of � to be shifted to higher values of m as �� in-
creases. Hence, the limit ��→ +
 �i.e., �B→−
� corre-
sponds to a binary mixture in which component B is present
only at infinite dilution, that is m→ +1. Therefore, at any
finite value of �A, we may replace Eq. �2.5� by the simpler
expression

lim
�B→−


��T,�,��� = ��T,�A�

= − �A	 + kBT�	 ln 	 + �1 − 	�ln�1 − 	��

− 3�AA	2, �2.15�

where we also used Eqs. �2.6a� and �2.6b�. Hence, comparing
Eq. �2.15� with the corresponding one for the pure lattice
fluid �see Eq. �2.13��, we notice that the functional depen-
dence of the grand-potential density on T and 	 is identically
the same. Hence, we would expect coexistence between liq-
uid and gaseous pure A fluids in the limit ��→ +

��B→−
� along a coexistence line

�A = − 3�AA �2.16�

terminating at a critical point CA at

kBTc
A =

3

2
�AA, �2.17�

which follows from to the parallel analysis of Eq. �2.13� in
Sec. II C 1. Transforming back to our original thermody-
namic fields, T, �, and ��, we can recast Eq. �2.16� with the
aid of Eqs. �2.6� as

��x = −
3

2
�AA −

�B

2
, �2.18a�

�x = −
3

2
�AA +

�B

2
+ kBT ln 2, �2.18b�

which are valid in the limit �B→−
 for all 0�kBT�
3
2�AA.

Hence, Eqs. �2.18� represent the full line in Fig. 1 ending at

the critical point CA.
However, the above considerations are not only valid in

the limit �B→−
 but also for finite but very large negative
values of �B, such that ���0. To see that, we add Eqs.
�2.18� and obtain after rearranging terms

�x = − 3�AA − ��x + kBT ln 2 ��� � 0� �2.19�

for phase coexistence between A-rich liquid and gas. The
reader should note that since �x depends linearly on both
��x and T, Eq. �2.19� defines a plane schematically depicted
in Fig. 1 by the hatched area forming an angle of � /4 with
the positive �� axis. One can also verify from Eq. �2.19�
that this plane is bent toward more positive � values as T
increases.

In the opposite case, namely if ���0 �i.e., �A�0�, it is
straightforward to demonstrate that

�x = − 3�BB + ��x + kBT ln 2 ��� � 0� �2.20�

by the same token as before but for m→−1. Hence, Eq.
�2.20� defines a plane at which B-rich liquid and gas coexist.
As can be seen in Fig. 1, in the limit ��→−
, this coexist-
ence plane terminates at the critical line ending at the critical
point CB whose temperature is given by

kBTc
B =

3

2
�BB. �2.21�

Similar to the previous case the coexistence plane forms an
angle of −� /4 with the negative �� axis.

3. The limit �\�

Next, we consider the case in which �� remains finite but
� tends to infinity. The structure of Eq. �2.5� requires that in
this limit 	→1, so we are dealing with liquid phases. Intro-
ducing the mole fraction of species A via

FIG. 1. Schematic representation of phase diagram of binary
mixtures in limiting cases ��→ ±
 and �→ +
 discussed in Secs.
II C 2 and II C 3. Thick lines connecting C� ��=A, B, or L� to a
point in the �-�� plane are coexistence lines of the effective pure
lattice fluid. CL exists only for mixtures obeying Eq. �2.27�.
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xA �
1 + m

2
, �2.22�

we may rewrite Eq. �2.5� as

lim
�→+


��T,�,���

= − � − ���2xA − 1�

+ kBT�xA ln xA + �1 − xA�ln�1 − xA� + xA ln 2�

− 3���AA − 2�AB + �BB�xA
2 + 2��AB − �BB�xA + �BB� .

�2.23�

Introducing

C � − � + �� − 3�BB, �2.24a�

�̄ � 2�� + 6��AB − �BB� − kBT ln 2, �2.24b�

�L � �AA − 2�AB + �BB, �2.24c�

we can rewrite Eq. �2.23� as

lim
�→+


��T,�,���

= C − �̄xA + kBT�xA ln xA + �1 − xA�ln�1 − xA�� − 3�LxA
2 ,

�2.25�

which turns out to be again of the same functional form as
Eq. �2.13� except for the trivial constant C, which is incon-
sequential for the determination of minima. Comparison be-
tween Eq. �2.25� and Eqs. �2.13� and �2.15� also shows that 	
has been replaced by xA in the liquid phase as the relevant
order parameter, where now �L determines the mean attrac-
tivity between molecules of the binary mixture �see Eq.
�2.24c��. Hence, because of this and because of the func-
tional equivalence between Eqs. �2.13� and �2.25�, we are
anticipating the existence of a third coexistence line for

�̄x = − 3�L, �2.26a�

kBT � kBTc
L =

3

2
�L, �2.26b�

now referring to coexisting A- and B-rich liquid phases.
Equation �2.26b� has an immediate consequence which we
note for future reference in Sec. III. Since T in Eq. �2.26b� is
obviously positively semidefinite, the inequality prompts us
to conclude that liquid+liquid phase coexistence will arise
only if �see Eq. �2.24c��

�AB �
1

2
��AA + �BB� . �2.27�

However, strictly speaking, the above analysis is valid only
in the limit �→
. For large but finite �, we realize that the
coexistence line will be replaced by a coexistence plane by
the same token as before �see Sec. II C 2�. Using Eqs. �2.26a�
and �2.24b�, this plane in T-�-�� space is given by the
condition

��x = −
3

2
�L +

kBT

2
ln 2 − 3��AB − �BB�

= −
3

2
��AA − �BB� +

kBT

2
ln 2 �� � 0� , �2.28�

which is independent of � and therefore parallel to the �
axis as indicated in Fig. 1. In that figure the limiting critical
point is labeled CL.

It is clear that for coexistence surfaces to be physically
meaningful they must be represented by ordinary contiguous
domains, that is they must not contain any “holes.” Hence,
the topology of the phase diagrams of binary mixtures will
depend on two conditions, namely, �1� how many coexist-
ence surfaces exist �i.e., depending on whether or not
liquid+liquid phase coexistence occurs, see Eq. �2.27�� and
�2� the way in which these coexistence surfaces are con-
nected in the space spanned by T, �, and ��. Hence, the
topology of phase diagrams depends on possible ways in
which the geometrical elements identified in Table I may be
combined.

III. RESULTS

A. Parameter space

Henceforth, we shall express all quantities in the custom-
ary dimensionless units, that is temperature is given in units
of �AA/kB, energies in units of �AA, and densities in units of
�3. Since we are dealing with binary mixtures composed of
molecules of equal size, this leaves us with only two inde-
pendent model parameters describing the attractions between
molecules of both species, namely �BB and �AB �since
�AA=1 in the dimensionless units�. However, following the
work by van Konynenburg and Scott �4�, we introduce a
more convenient parametrization via

� �
1 − �BB

1 + �BB
, �3.1a�

� � 1 −
2�AB

1 + �BB
. �3.1b�

In the still vast parameter space characterizing binary mix-
tures, we focus on a somewhat narrow but most interesting
region in which � is small, that is �BB�1 �i.e., �BB��AA in
absolute units� which causes CA and CB to be distinct but
rather similar. In addition, we do not consider mixtures char-
acterized by ��0, because these mixtures do not exhibit
liquid+liquid phase separation even for large � �see Eq.
�2.27��. Consequently, we concentrate here on the more in-
teresting cases characterized by ��0 for which CL exists
because the inequality Eq. �2.27� applies. We emphasize,
however, that we also verified the existence of mixtures of a
type existing only for combinations of � and � outside our
present range of interest �33�. For example, our model is
capable of reproducing mixtures of types IV and V of the van
Konynenberg and Scott classification scheme �see Fig. 1 of
Ref. �4��.

Henceforth, we shall classify our model mixtures accord-
ing to the scheme proposed by van Konynenburg and Scott
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�4� and adopted later by Deiters and Pegg �10�. Their classi-
fication scheme is illustrated in Fig. 2, where we identify
regions of distinct phases indicated in the figure and sepa-
rated by characteristic lines. The diagram is symmetric with
respect to the � axis where the mirror image obtains if A and
B components are interchanged, so that only cases for which
��0 need to be considered explicitly. Thick solid lines in
Fig. 2 demarcate systems exhibiting one TCP. On account of
the different systems considered by van Konynenburg and
Scott �4�, Deiters and Pegg �10�, and us, we have adjusted
the position of these lines from the corresponding partial
phase diagram presented by van Konynenburg and Scott
�their Fig. 1� by making sure that our symmetric mixtures
��=0� pertain to the correct classes indicated in Fig. 2.

The most important mixture classes in the context of our
work are labeled I, II, II-A, and III-HA �see Fig. 2�. Their
main features can be summarized as follows. Except for mix-
tures of type I, all others exhibit three critical points in the
limits �→ +
, ��→ ±
, namely CA, CB, and CL at which
critical lines end �see Secs. II C 2 and II C 3�. In mixtures of
type I, CL does not exist because the inequality Eq. �2.27� is
violated for ��0 so that liquid+liquid phase separation
cannot occur �see Sec. II C 3�. Thus, mixtures of type I ex-
hibit a single critical line connecting CA and CB. Mixtures of
type I-A are characterized by an additional azeotropic line
�see Eq. �2.10�� intersecting the critical line at a temperature

higher than that at either CA or CB �negative azeotrope�.
Mixtures of type II exhibit liquid+liquid phase separa-

tion. They have one critical line connecting CA and CB and a
second one connecting CL to some CEP. Above the line
�= ±� �i.e., �AB=�BB or �AB=�AA� type-II mixtures show an
additional azeotropic line �positive azeotrope�. This is indi-
cated by the suffix “-A” in the appropriate region in Fig. 2.

Binary mixtures of type III-HA �and III-HAm� are dis-
tinctly different from the other two types. Here one critical
line connects CA to CL and a second one ties CB to some
CEP. Along the latter, Tc decreases monotonically thus giv-
ing rise to so-called “heteroazeotropic” behavior �1�. The
difference between mixtures of types III-HA and III-HAm is
that, for the latter, the pressure along the critical line going
from CA and CL passes through a local maximum and mini-
mum before increasing continuously as one approaches CL.

B. Symmetric mixtures

We begin the discussion of specific complete phase dia-
grams with symmetric mixtures which are realized by setting
�=0 �see Fig. 2�.

1. Almost “simple” fluids

For pedagogic reasons, we first focus on an almost trivial
case characterized by �=0. In this case, we may rewrite Eq.
�2.5� �in dimensionless units, see Sec. III A� as

��T,�,��� = − �art	 + T�	 ln 	 + �1 − 	�ln�1 − 	�� − 3	2,

�3.2�

where the artificial chemical potential is defined as

�art � � + ��m +
T

2
��1 + m�ln�1 + m� + �1 − m�ln�1 − m�� .

�3.3�

Comparison of Eqs. �3.2� and �2.13� reveals that we are deal-
ing with an effective pure fluid, where, however, the chemi-
cal potential �art depends on T and m �22�. Thus, in the
present case, we expect gas+liquid coexistence for T�

3
2 and

�art=−3 �see Sec. II C 1�. For constant T�
3
2 and for

�art=−3 in Eq. �3.3�, we realize that � becomes a function of
�� whereas the value of m is determined by the condition
�art=−3. Therefore, we have isothermal lines of gas+liquid
coexistences �i.e., different densities of coexisting phases�
with m being equal in both phases. In other words, we have
an azeotrope at every single point on the coexistence surface
according to the definition in Eq. �2.10�. The mixture is,
therefore, a transition case between mixtures of types I with-
out azeotropy and I-A with a single line of azeotropic points
pertaining to the coexistence surface. Figure 3 shows the
coexistence surface in T-�-�� space for the present situa-
tion. Dashed-dotted lines indicate isotherms of two-phase co-
existence. Three different regions are clearly discernible: for
low � the gas phase �G� is stable behind the surface. At
sufficiently high �, we also see a stable demixed A-rich liq-
uid phase for large ��, whereas the demixed B-rich liquid
phase is stable at low values of ��. The coexistence surface

FIG. 2. Partial phase diagram for mixtures composed of mol-
ecules of equal size. Solid lines separate regions of the �-� plane
�see Eqs. �3.1�� characterized by mixtures of a specific type follow-
ing the classification scheme introduced in Ref. �4� �see text�. Com-
plete phase diagrams are presented in this work for the cases indi-
cated by �. Vertical dashed line �---� ��=0, see Eq. �3.1a�� refers to
symmetric mixtures of various types whereas the long dashed line
�–––� demarcates boundary between mixtures of type III-HA and
III-HAm. Limits of azeotropy are indicated by lines �= ±�. Thick
solid lines refer to systems exhibiting one TCP.
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terminates at the critical line connecting the critical points
CA and CB of the pure A and B fluids, respectively, which is
characteristic of type I mixtures. The temperature along this
critical line Tc= 3

2 is independent of � and ��. We note in
passing that the vertical dotted line represents the corre-
sponding phase diagram of a pure fluid whose grand-
potential density, we recover from Eqs. �3.2� for ��=0
which implies m=0 so that �art=�.

2. �=0.4

Let us now promote demixing by changing � to 0.4 �see
Eq. �3.1b��. The corresponding complete phase diagram is
presented in Fig. 4. From the plot in Fig. 4, we notice that the
increased tendency of the mixture to decompose adds a new
coexistence surface that did not appear for the previously
discussed case �see Fig. 3�. Across this surface decomposed
A-rich and B-rich liquid phases coexist. The surface is
bounded by a critical line extending toward CL with increas-
ing �→ +
 as discussed in Sec. II C 3. This coexistence

surface joins the one corresponding to coexistence between
both A-rich liquid and B-rich liquid and gas. However, be-
cause the critical line for the liquid+liquid coexistence is
located at a temperature which is lower than that of the criti-
cal line connecting CA and CB, a CEP must exist at which the
critical line starting at CL connects to the coexistence surface
between gas and demixed �A-rich and B-rich� liquid.

Below the CEP, the two surfaces are connected along a
triple line, which turns into an azeotropic line above the tem-
perature of the CEP. This line, for which m=0, terminates at
the critical line between CA and CB bounding the second
coexistence surface. The azeotropic line terminates at the
minimum of this critical line so that we are dealing with
positive azeotropy in Fig. 4.

The topology just discussed pertains to the class of sym-
metric II-A systems �see Fig. 2�, which exists over the range
0���0.42. Mixtures of this type have also been predicted
on the basis of semiempirical equations of state �4,10�. More
recently, Wilding also verified this type of mixture in a
Monte Carlo study for �=0.3 �18�, where we reemphasize
that in none of these earlier works �4,10,18� complete phase
diagrams were presented.

3. �=0.5

If we further enhance the tendency of the mixture to de-
compose by setting �=0.5, the topology of the correspond-
ing complete phase diagram changes markedly as the plot in
Fig. 5 illustrates. Now the three critical points CA, CB, and
CL have identical temperatures as one can verify from
Eqs. �3.1�, �2.17�, �2.21�, �2.24c�, and �2.26b�, because
�AA=�BB=�L. As one would anticipate intuitively the phase
diagram turns out to be quite symmetric in this case. This
enhanced symmetry �with respect to the two previously dis-
cussed cases in Secs. III B 2 and III B 3� causes the triple
line, at which the two coexistence surfaces merge, to trifur-
cate into three separate triple lines at a quadruple point �QP�.
Each one of these triple lines terminates at a separate TCP.

Each pair of TCPs is connected by a critical line such that
a fourth one-phase region arises bounded by three coexist-
ence surfaces that are themselves bounded by three triple

FIG. 3. Phase diagram for the case �=0, �=0 in T-�-�� space
where G, A, and B refer to one-phase regions of gaseous and A-rich
and B-rich liquid mixtures, respectively. Gas+liquid critical points
of pure A�B� fluids are labeled CA �CB� �see Table I for symbols
and line styles�. The vertical dotted line represents the case ��=0.

FIG. 4. As Fig. 3, but for �=0.4. Symbols CL and AZ refer to
the liquid+liquid critical point in the limit �→
 �see Sec. II C 3�
and a line of azeotropic points �see Table I for symbols and line
styles�.

FIG. 5. As Fig. 4, but for �=0.5. The symbol QP refers to the
quadruple point. The plot on the right side is an enlargement show-
ing in addition a region of mixed liquid phases �M� and a line of
azeotropic points �AZ� �see Table I for symbols and line styles�.
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lines, the three critical lines, and the quadruple point as the
enlargement in Fig. 5 reveals. This new one-phase region is
identified as a “mixed” �M� phase because the stable liquid
phase in this region is characterized by a relatively large
density but small m. The new mixed phase coexists with
both demixed A-rich and B-rich liquid phases for tempera-
tures above and below that of the quadruple point and the
three TCPs, respectively.

Across the coexistence surface between mixed liquid and
gaseous phase, we observe a line of azeotropic points termi-
nating at the respective critical line. The azeotropic line ends
at the minimum of the critical line, that is we are again
dealing with a case of positive azeotropy. A phase diagram of
this topology has also been reported by Pini et al. (see Fig.
6�d� in Ref. �28�). It represents a transition state between
symmetric II-A* and III-A* classes of systems �see Fig. 2
and Sec. IV�. However, Pini et al. failed to recognize the
presence of the azeotropic line displayed in Fig. 5 because
they focused only on special �two-dimensional� projections
rather than the full topology of the �three-dimensional� phase
diagram �28�.

4. �=0.6

Finally, we consider a system with an even stronger de-
mixing tendency characterized by �=0.6. In this case, the
fluid exhibits a tendency to decompose even at high tempera-
tures as the plot in Fig. 6 shows. From the plot in that figure,
we notice only a single TCP at which the triple line meets the
two critical lines ending at CA and CB. At this TCP, all three
lines have a common tangent. We also note that the two
critical lines pass through a minimum before joining the
triple line at the TCP. At the TCP, a third critical line starts
ending at CL. Mixed liquid phases or azeotropy as for
�=0.5 are not observed here.

Referring back to the partial phase diagram plotted in Fig.
2, we realize that the present phase behavior pertains to the
symmetric class III-HA according to van Konynenburg and
Scott’s classification scheme �4�. A mixture of this sort has
also been reported by Keskin et al. based upon an analysis of
a lattice-fluid model where they focus, however, only on the
critical lines �9� rather than the three-dimensional topology
of the complete phase diagram.

C. Asymmetric binary mixtures

We now turn to a discussion of asymmetric binary mix-
tures, that is mixtures where �AA��BB �and consequently
��0, see Eq. �3.1a��. Specifically, we consider mixtures for
which �=0.18 ��BB=0.7, see Fig. 2�. An immediate conse-
quence of the asymmetry is a difference in temperature at the
two critical points CA and CB. According to the discussion in
Sec. II C 2, Tc

A= 3
2 , whereas Tc

B=1.05 �see Eqs. �2.17� and
�2.21��.

1. �=0.15

We begin this section with a system characterized by a
rather small value of �=0.15��. One might immediately
expect that under these conditions, liquid+liquid phase sepa-
ration should never occur because �AB=0.7225��BB. Hence,
it is favorable both energetically and entropically for a mol-
ecule of species B to be surrounded by molecules of mixture
component A rather than by other molecules of species B.
However, as �� decreases �i.e., with increasing �B, see Eq.
�2.6b�� the mixture accommodates more molecules of spe-
cies B so that, in fact, decomposition into A- and B-rich
liquid phases becomes possible as the plot in Fig. 7 shows in
accord with the inequality in Eq. �2.27�. The corresponding
liquid+liquid coexistence surface is nearly orthogonal to the
�-�� plane and located along a line ��=−0.5. The liquid
+liquid critical line is almost independent of both �� and T
with a critical temperature Tc�Tc

L=0.38 �see Eqs. �2.24c�,
�2.26b�, and �3.1��. This critical temperature is also equal to
the temperature of the CEP �on account of the temperature
independence of the liquid+liquid critical line� at which the
critical line terminates on the coexistence surface between
gaseous and A- and B-rich liquid phases.

Further inspection of Fig. 7 reveals that the critical line
connecting CA and CB varies monotonically. Therefore, we
do not observe azeotropy �either positive or negative�, and
consequently, the present topography of the phase diagram is
characteristic of mixture type II as we infer from Fig. 2.

2. �=0.29

If we now increase � to a value of 0.29 the situation is
different from the one discussed previously in Sec. III C 1 in

FIG. 6. As Fig. 4, but for �=0.6 �see Table I for symbols and
line styles�. FIG. 7. Phase diagram for the case �=0.18, �=0.15 in

T-�-�� space where G, A, and B refer to one-phase regions of
gaseous and A-rich and B-rich liquid mixtures, respectively �see
Table I for symbols and line styles�.
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that the attraction between unlike molecules is weaker than
that between like molecules of either species. Nonetheless,
the phase diagram in the present case has features qualita-
tively similar to that presented in Fig. 7. However, the tem-
perature at the CEP is substantially larger here than the cor-
responding one in Fig. 7. More importantly though is the fact
that the critical line connecting CA and CB now passes
through a minimum. As was seen for �=0 before, this gives
rise to azeotropy in the phase diagram plotted in Fig. 8. The
line of azeotropic points is shifted to the left of the coexist-
ence surface along which gaseous phases coexist with de-
mixed liquid phases. Because of the topology of its phase
diagram the present mixture still pertains to class II-A ac-
cording to the classification scheme illustrated by the plot in
Fig. 2.

A minor aspect that cannot be read off the plot in Fig. 8
concerns the fact that along the line of azeotropic points the
composition of the mixture is nearly temperature indepen-
dent characterized quantitatively by m�−0.6; that is, we are
dealing with B-rich azeotropes.

3. �=0.41

As � increases to 0.41, the mixture exhibits an increasing
tendency to decompose. Consequently, the critical line end-
ing eventually at CL is shifted to even higher T compared
with both previously discussed cases as one can see in Fig. 9.
For this value of �, it turns out that �BB=�L �see Eq. �2.24c��
and hence Tc

B=Tc
L=1.05�Tc

A= 3
2 , so that the mixture exhibits

a symmetry with respect to coexistence between gas and
B-rich liquid �CB� and coexistence between A- and B-rich
liquids �CL�. Therefore, the two critical lines ending at CL

and CB eventually merge with the triple line at a TCP now
shifted toward CA.

Moreover, the phase diagram plotted in Fig. 9 contains a
short line of azeotropic points indicating that we are still in
the azeotropic regime of the partial phase diagram plotted in
Fig. 2. In fact, the present mixture is sort of a transition state
between a mixture of type II-A and III-HAm. The latter is
inferred from a plot of the pressure P versus temperature in
Fig. 10, because along the critical line from CA to CL the
curve plotted in Fig. 10 passes through a maximum and a

minimum before increasing monotonically as one ap-
proaches CL �4�. Here the pressure is obtained from the usual
expression �see, for example, Ref. �34��

� = − P . �3.4�

4. �=0.53

In this case, the tendency to decompose in the liquid
phase has risen to the extent that, similar to the symmetric
mixture ��=0� at �=0.29 �see Fig. 8� two of the three lim-
iting critical points are connected by a single critical line.
According to the plot in Fig. 11, these appear to be CA and
CL in the present case; whereas in Fig. 8, the two critical
points complying with this condition were CA and CB.
Hence, in a certain sense, one may perceive the phase dia-
gram plotted in Fig. 11 as being qualitatively equivalent to
the one shown in Fig. 8 but rotated by an angle 3� /4 in the
�-�� plane �see Sec. IV�.

Finally, to make sure that the phase diagram plotted in
Fig. 11 pertains to the class III-HA of van Konynenburg and
Scott’s classification scheme �see Fig. 2�, we analyze a plot
of P versus T in Fig. 12, which confirms our expectation,

FIG. 8. As Fig. 7, but for �=0.29 �see Table I for symbols and
line styles�.

FIG. 9. As Fig. 7, but for �=0.41 �see Table I for symbols and
line styles�.

FIG. 10. Pressure P as function T along specific lines of the
phase diagram plotted in Fig. 9 �see Table I for symbols and line
styles�.
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because in this case CA and CL are connected by a mono-
tonically increasing �decreasing� critical line.

IV. DISCUSSION AND CONCLUSIONS

In this work, we focus on the topology of complete phase
diagrams for symmetric and asymmetric binary mixtures. In
the context of this work the terms “symmetric” and “asym-
metric” refer to �AA=�BB ��=0� and �AA��BB ���0�, re-
spectively. From a discussion of Gibbs’ phase rule in the
light of these systems, we argued in Sec. II B that in binary
fluid mixtures, TCPs should not exist in general. The reason
is that the condition of independent criticality of three pairs
of phases all in coexistence with each other cannot be satis-
fied geometrically. This is because in thermodynamic state
space three coexisting phases are represented by a �triple�
line. Imposing one additional constraint on the set of points
forming that line selects one of them �e.g., a CEP�. This
point cannot satisfy yet another independent condition of the
sort stated in Eq. �2.8� simultaneously. In other words, we
would be searching for a geometrically undefined object of
dimension f =−1 by imposing Eq. �2.8� independently twice
on points along the triple line.

Nevertheless, existence of TCPs in binary mixtures has
been predicted by Furman and Griffiths �6�, by van

Konynenburg and Scott �4�, and subsequently verified by a
number of others �7–12,28�. However, because in none of
these previous studies the full topology of the phase diagram
was considered, the crucial relation between special symme-
tries in the binary mixture and the existence of TCPs was not
fully appreciated. This is because the overwhelming number
of these earlier works was based upon semiempirical equa-
tions of state where it would be exceedingly hard to calculate
the grand �or any other� thermodynamic potential which is
the key quantity if one aims at constructing complete phase
diagrams as in this work. On the contrary, our microscopic
�i.e., molecular� approach permits a relatively easy access to
�. From a detailed investigation of complete phase diagrams
constructed from �, we demonstrate that TCPs may form if
the two conditions of criticality imposed on points along a
triple line are mutually dependent.

Such a situation arises, for example, if symmetric mix-
tures are concerned because if gas and A-rich liquid become
critical, so must gas and B-rich liquid since molecules of
both components are distinct only by their color. This
causes CA and CB to be located at the same temperature
Tc

A=Tc
B= 3

2 , so that the variation of the critical line between
CA and CB is symmetric with respect to the plane ��=0. If
CL is located at a temperature far lower than Tc

A=Tc
B�Tc

L, all
three coexistence surfaces merge along a triple line ending at
a CEP as illustrated by the plot in Fig. 4.

However, if CL is located at a temperature above
Tc

A=Tc
B�Tc

L, a different scenario becomes possible. This
situation arises for a sufficiently strong tendency of the mix-
ture to exhibit liquid+liquid decomposition, that is for suffi-
ciently large values of �. Again the three coexistence sur-
faces connect along the triple line for a certain temperature
range. However, now the critical lines bounding the coexist-
ence surfaces between gas, on one hand, and both demixed
A-rich and B-rich liquid, on the other hand, may approach
the critical line between demixed A- and B-rich liquids from
below. Since physically sensible phase diagrams must not
have any holes, the only way to fully connect the three co-
existence surfaces is to have the triple line ending at a TCP
rather than a CEP. This situation is illustrated in Fig. 6. In
fact, the existence of this TCP is a direct consequence of the
symmetry between A-rich and B-rich liquids, that is
Tc

A=Tc
B, because �AA=�BB. The mixtures which exhibit such

a TCP are on the vertical thick solid line at �=0 in Fig. 1 at
which �AA=�BB.

This logic also suggests that there might be a special situ-
ation at which Tc

A=Tc
B=Tc

L, such that each of the critical lines
is approached by the two other ones from below. This situa-
tion is, in fact, realized in Fig. 5, where we see that again the
critical lines merge tangentially with a triple line, which
gives rise to three rather than just a single TCP. These three
triple lines now give rise to a fourth phase, namely that of the
mixed liquid. The three triple lines branch off a triple line
between gas, A-rich, and B-rich demixed liquid phases at the
quadruple point �see Fig. 5�. However, this situation may be
rather arcane with respect to a realization in any experimen-
tal systems, but once again emphasizes the important role of
geometry in the context of complex phase diagrams. At least
it may be exceedingly difficult to prepare an experimental
system represented by an isolated point in thermodynamic
state space.

FIG. 11. As Fig. 7, but for �=0.53 �see Table I for symbols and
line styles�.

FIG. 12. Pressure P as function T along specific lines of the
phase diagram plotted in Fig. 11 �see Table I for symbols and line
styles�.
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Even though these symmetry arguments seem plausible
for symmetric mixtures �i.e., because of �AA=�BB�, it seems
quite surprising at first that TCPs do arise even in asymmet-
ric mixtures, because our above argument based upon the
mutual dependence of criticality between gas and both A-
and B-rich liquids seems entirely inapplicable as far as asym-
metric mixtures are concerned. The obvious reason is that
because of ��0 ��AA��BB�, the variation of the critical
lines ending at CA and CB is no longer symmetric with re-
spect to the plane ��=0.

The key to understanding that we might still observe
TCPs despite the asymmetry of the mixture is to realize first
that the role of the critical points CA, CB, and CL may be
inverted in the sense that one may now generate a situation
in which Tc

B=Tc
L�Tc

A �i.e., �BB=�L��AA� as shown in Fig.
9. In fact, the phase diagram presented in that figure may be
perceived as being geometrically equivalent to the one
shown in Fig. 6 for a symmetric mixture but rotated by an
angle of 3� /4 in the �-�� plane with the role of CA and CL
interchanged with regard to the relative magnitudes of the
critical temperatures Tc

A and Tc
L. Hence, the same geometric

arguments presented in conjunction with phase diagrams for
symmetric mixtures applies to asymmetric ones as well with
the difference that the role of the participating coexistence
surfaces has to be changed. To summarize, we observe a
TCP due to the symmetry condition �BB=�L in all mixtures
represented by the thick solid line for ��0 in Fig. 1. More-
over, mixtures obeying �AA=�L �see the other thick solid line
in Fig. 1 for ��0� also exhibit a TCP.

However, the three coexistence surfaces may connect
along a triple line ending in a CEP if the tendency of the
liquid phase to decompose is large enough. This situation is
depicted in Fig. 10, where the enhanced tendency of the mix-
ture to decompose causes CA, CB, and CL to be ordered such
that Tc

A�Tc
L�Tc

B. Note again that this can be perceived as
being geometrically equivalent to the situation shown in Fig.
4 for a symmetric mixture with the phase diagram rotated in
the �-�� plane by 3� /4.

Hence, we see that whether or not TCPs arise depends
crucially on the geometry of the coexistence surfaces be-
tween gas and both demixed A- and B-rich liquids and the
one describing coexistence between the latter two phases.
The reader should note that the relation between symmetry
properties of the �complete� phase diagram and existence of
TCPs established in this work is far more general than the
one linking TCPs to the symmetry of the intermolecular in-

teractions �28�. The former, in conjunction with the physical
requirement that coexistence surfaces must be fully con-
nected, poses the necessary geometrical conditions that de-
termine whether or not TCPs may exist in binary mixtures.
Thus, we conclude that only on the basis of a calculation of
complete phase diagrams as in this work, the relation be-
tween TCPs and other geometrical features such as triple and
critical lines can be fully understood.

The necessity to calculate complete phase diagrams rather
than special cuts through those becomes particularly appar-
ent if one considers the cut along the line ��=0 previously
investigated in the literature for the special case of symmet-
ric binary mixtures �17,30�. If one focuses on this cut, one
inevitably misses two of the three TCPs shown in Fig. 5 �see
Fig. 2�c� of Ref. �17� and Figs. 1�b� and 1�c� of Ref. �30��.
Moreover, the role of azeotropy in the complete phase dia-
grams was completely missed in these earlier studies, which
causes the classification scheme employed by Wilding et al.
�17� and later also adopted by us �30� to be inadequate and
inconsistent with the one proposed by van Konynenburg and
Scott �4�.

In closing, we emphasize that the special class of symmet-
ric binary mixtures at ��=0 is interesting because of its
relation to a number of other important model fluids. For
example, pure ferroelectric liquids without external fields
can be mapped onto the symmetric binary mixtures at ��
=0. Here it turns out that ordered phases in the ferroelectric
liquid �characterized by either “spin up” or “spin down”�
correspond to demixed A- or B-rich liquid phases, whereas
isotropic phases in ferroelectric liquids correspond to mixed
phases in the present model mixtures �35–43�. The same cor-
respondence applies to liquid 3He-4He mixtures, where the
superfluid states of 4He correspond to demixed liquid states
in our model; likewise, the 3He-4He coexistence may be in-
terpreted as coexistence between gas and demixed liquid in
our model. In fact, as we note in passing the shape of the
peak in the heat capacity of pure 4He at the superfluid tran-
sition gave rise to the term “� line” usually associated with
the critical line in symmetric binary mixtures of type III-HA
�44�.
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